Data col	lection
----------	---------

Stoe AED-2 four-circle	$\theta_{\rm max} = 22.51^{\circ}$
diffractometer	$h = -9 \rightarrow 9$
$\omega/2\theta$ scans	$k = 0 \rightarrow 10$
Absorption correction: none	$l = 0 \rightarrow 12$
1356 measured reflections	2 standard reflections
1356 independent reflections	frequency: 60 min
893 reflections with	intensity decay: 1.5%
$I > 2\sigma(I)$	

Refinement

Refinement on F^2	$\Delta \rho_{\rm max} = 0.27 \ {\rm e} \ {\rm \AA}^{-3}$
$R[F^2 > 2\sigma(F^2)] = 0.045$	$\Delta \rho_{\rm min} = -0.30 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.116$	Extinction correction:
S = 1.144	SHELXL93 (Sheldrick,
1352 reflections	1993)
163 parameters	Extinction coefficient:
H atoms: see below	0.0010(11)
$w = 1/[\sigma^2(F_o^2) + (0.0382P)^2]$	Scattering factors from
+ 1.6057 <i>P</i>]	International Tables for
where $P = (F_o^2 + 2F_c^2)/3$	Crystallography (Vol. C)
$(\Delta/\sigma)_{\rm max} = -0.001$	

Table 1. Selected geometric parameters (Å, °)

Cu1—O3	1.895 (4)	Cu1—OW1	2.470 (6)
Cu1—N1	2.135 (4)		
O3Cu1N1	80.6 (2)	N1-Cu1-OW1	91.8 (2)
O3Cu1OW1	91.6(2)		

The crystal did not diffract significantly beyond 45° in 2θ and diffraction data were not measured beyond this limit. Water H atoms were located from difference maps and refined isotropically. The remainder were included in calculated positions and treated as riding atoms using *SHELXL93* (Sheldrick, 1993) default parameters, except that one parameter was refined for each methyl group to define its orientation.

Data collection: *DIF*4 (Stoe & Cie, 1995). Cell refinement: *DIF*4. Data reduction: *REDU*4 (Stoe & Cie, 1996). Program(s) used to solve structure: *SHELXS*86 (Sheldrick, 1990). Program(s) used to refine structure: *SHELXL*93. Molecular graphics: *PLATON/PLUTON* (Spek, 1990). Software used to prepare material for publication: *SHELXL*93.

This work has been supported by the Swiss National Science Foundation.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: MU1367). Services for accessing these data are described at the back of the journal.

References

- Allen, F. H. & Kennard, O. (1993). Chem. Des. Autom. News, 8, 31-37.
- Dugas, H. (1989). In Bioorganic Chemistry: A Chemical Approach to Enzyme Action, 2nd ed. Berlin: Springer-Verlag.
- Graf, M. & Stoeckli-Evans, H. (1994). Acta Cryst. C50, 1461-1464.
- Graf, M., Stoeckli-Evans, H., Escuer, A. & Vicente, R. (1997). *Inorg. Chim. Acta*, 257, 89–97.
- Graf, M., Stoeckli-Evans, H., Whitaker, C., Marioni, P.-A. & Marty, W. (1993). *Chimia*, **47**, 202–205.
- Iida, H., Hayashida, K., Yamada, M., Takahashi, K. & Yamada, K. (1973). Synth. Commun. 3, 225–230.

© 1998 International Union of Crystallography Printed in Great Britain – all rights reserved

- Neels, A., Stoeckli-Evans, H., Wang, Y., Clearfield, A. & Poojary, D. M. (1997). *Inorg. Chem.* 36, 5406–5408.
- O'Connor, J. C., Klein, C. L., Majeste, R. J. & Trefonas, L. M. (1982). Inorg. Chem. 21, 64–67.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Spek, A. L. (1990). Acta Cryst. A46, C34.
- Stoe & Cie (1995). DIF4. Diffractometer Control Program. Stoe & Cie, Darmstadt, Germany.
- Stoe & Cie (1996). REDU4. Data Reduction Program. Stoe & Cie, Darmstadt, Germany.

Acta Cryst. (1998). C54, 308-310

cis-Dichloro(2-diphenylphosphinoethylamine-*N*,*P*)palladium(II)

MARK D. SPICER

Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland. E-mail: m.d.spicer@strath.ac.uk

(Received 11 June 1997; accepted 13 November 1997)

Abstract

The coordination geometry about the palladium(II) ion in $[PdCl_2{Ph_2P(CH_2)_2NH_2}]$ is distorted square planar. Individual atoms are displaced from the PdCl_2PN coordination plane by no more than 0.094 Å, while inplane distortion of the bond angles at the metal atom is more marked. The greater *trans* influence of phosphine over amine is reflected in the mean Pd—Cl bond lengths of 2.383 Å, *trans* to P, and 2.293 Å, *trans* to N.

Comment

Hybrid ligands with both hard and soft donor atoms are able to form hemi-labile complexes which have been noted for their utility in catalytic systems (Bader & Lindner, 1990; Wehman et al., 1995). To this end, we are currently studying the complexes of a series of tridentate Schiff base ligands having P-, Nand O-donor atoms. The title compound, (I), was obtained unexpectedly from the reaction of one of those ligands, $o-C_6H_4(OH)\{C=N(CH_2)_2PPh_2\}$ (Dilworth et al., 1994), with [PdCl₂(NCPh)₂] in chloroform. We believe that the ligand (either free or complexed) undergoes acid-catalysed hydrolysis of the imine linkage (there is often a trace of HCl in CHCl₃) to give 2-diphenylphosphinoethylamine and hence its palladium chloride complex. The preparation of this compound has been noted previously (Suzuki et al., 1996).

Compound (I) crystallizes with two molecules, A and B, in the asymmetric unit (Fig. 1). These differ slightly in the conformation of the ligand backbone and thus in the orientation of the phenyl groups. For molecule A and the inverted form of B, the corresponding torsion angles agree in sign but differ by up to 22° in magnitude. The largest deviations are in the torsion angles between the C(2)—P(1) or C(16)—P(2) bonds and the C_{ipso}—C_{ortho} bonds in the respective phenyl

Fig. 1. ORTEPII plot (Johnson, 1976) of [PdCl₂{Ph₂P(CH₂)₂NH₂}] with 40% probability ellipsoids, showing the relative conformations of the two unique molecules, A and B, in the asymmetric unit.

groups. The coordination sphere of each palladium ion is distorted square planar, with maximum deviations from the PdCl₂NP weighted least-squares planes of 0.023 (3) and 0.094 (3) Å (means of 0.008 and 0.034 Å for the two conformations). The ligand bite angles, N(1)—Pd(1)— P(1) and N(2)—Pd(2)—P(2), are 84.96 and 85.07°, respectively, in close agreement with those observed in [Pd{Me₂P(CH₂)₂NH₂}₂]²⁺ [83.9 (9) and 84.5 (10)°; Suzuki *et al.*, 1996], while the Cl—Pd—Cl angles are both substantially greater than 90°, as might be expected.

The bond lengths around each palladium ion are also worthy of note. In particular, the Pd—Cl(*trans* to P) distances [2.366 (1) and 2.400 (1) Å] are markedly greater than the Pd—Cl(*trans* to N) distances [2.289 (1) and 2.297 (1) Å]. This is in keeping with the stronger *trans*-labilizing influence of phosphine donors over amine donors, and supports the assertion that the chloride coordination sites have potentially rather different reactivities.

Experimental

The title compound was obtained by refluxing equimolar quantities of bis(benzonitrile)palladium dichloride and $o-C_6H_4$ -(OH){C=N(CH₂)₂PPh₂} in untreated chloroform. After removal of the solvent, a small portion of the crude residue was dissolved in CDCl₃ for NMR spectroscopy. On standing for several days, yellow needles of [PdCl₂{Ph₂P(CH₂)₂NH₂}] were formed.

Crystal data

 $[PdCl_{2}(C_{14}H_{16}NP)]$ $M_{r} = 406.57$ Triclinic $P\overline{1}$ a = 8.082 (2) Å b = 12.554 (2) Å c = 16.724 (5) Å $\alpha = 74.02 (2)^{\circ}$ $\beta = 85.21 (3)^{\circ}$ $\gamma = 89.39 (2)^{\circ}$ $V = 1625.5 (7) Å^{3}$ Z = 4 $D_{x} = 1.661 \text{ Mg m}^{-3}$ D_{m} not measured Mo $K\alpha$ radiation $\lambda = 0.71069$ Å Cell parameters from 23 reflections $\theta = 16.2-18.9^{\circ}$ $\mu = 1.555$ mm⁻¹ T = 295.2 K Needle $0.80 \times 0.25 \times 0.05$ mm Yellow

Data collection

Rigaku AFC-75 diffractometer ω scans with profile analysis Absorption correction: empirical ψ scans (North et al., 1968) $T_{min} = 0.738, T_{max} = 0.925$

6862 measured reflections

6382 independent reflections

5333 reflections with $I > 0.5\sigma(I)$ $R_{int} = 0.015$ $\theta_{max} = 26.02^{\circ}$ $h = 0 \rightarrow 9$ $k = -15 \rightarrow 15$ $l = -20 \rightarrow 20$ 3 standard reflections every 150 reflections

intensity decay: none

Refinement

Refinement on F	$(\Delta/\sigma)_{\rm max} = 0.009$
R = 0.042	$\Delta \rho_{\rm max} = 0.52 \ {\rm e} \ {\rm \AA}^{-3}$
wR = 0.036	$\Delta \rho_{\rm min} = -0.52 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.117	Extinction correction: none
5333 reflections	Scattering factors from Inter-
343 parameters	national Tables for X-ray
H atoms not refined	Crystallography (Vol. IV)
$w = 1/\sigma^2(F)$	

Table 1. Selected geometric parameters (Å, °)

Pd(1)—Cl(1)	2.297 (1)	P(1) - C(3)	1.813 (4)
Pd(1) - Cl(2)	2.400(1)	P(1)-C(9)	1.795 (4)
Pd(1)—P(1)	2.209(1)	P(2)-C(16)	1.821 (4)
Pd(1)—N(1)	2.049 (3)	P(2)—C(17)	1.809 (4)
Pd(2)-Cl(3)	2.289(1)	P(2)-C(23)	1.803 (5)
Pd(2)-Cl(4)	2.366(1)	N(1)—C(1)	1.479 (5)
Pd(2)—P(2)	2.201(1)	N(2)C(15)	1.468 (6)
Pd(2)—N(2)	2.056 (3)	C(1)C(2)	1.511 (6)
P(1)—C(2)	1.831 (4)	C(15)—C(16)	1.468 (7)
Cl(1)—Pd(1)—Cl(2)	96.27 (5)	C(2) - P(1) - C(3)	106.0 (2)
Cl(1) - Pd(1) - P(1)	91.97 (5)	C(2) - P(1) - C(9)	107.6 (2)
Cl(1) - Pd(1) - N(1)	176.87 (9)	C(3) - P(1) - C(9)	107.1 (2)
Cl(2)—Pd(1)—P(1)	171.74 (4)	Pd(2) - P(2) - C(16)	100.6 (2)
Cl(2) - Pd(1) - N(1)	86.80 (9)	Pd(2) - P(2) - C(17)	115.2 (1)
P(1) - Pd(1) - N(1)	84.96 (9)	Pd(2)—P(2)—C(23)	117.4 (2)
Cl(3) - Pd(2) - Cl(4)	93.23 (4)	C(16)—P(2)—C(17)	109.5 (2)
Cl(3) - Pd(2) - P(2)	92.53 (4)	C(16)—P(2)—C(23)	107.0 (2)
Cl(3) - Pd(2) - N(2)	176.44 (10)	C(17)—P(2)—C(23)	106.6 (2)
Cl(4) - Pd(2) - P(2)	173.94 (4)	Pd(1) - N(1) - C(1)	116.3 (3)
Cl(4) - Pd(2) - N(2)	89.25 (10)	Pd(2)—N(2)—C(15)	116.6 (3)
P(2) - Pd(2) - N(2)	85.07 (10)	N(1) - C(1) - C(2)	108.9 (3)
Pd(1) - P(1) - C(2)	100.9 (1)	P(1) - C(2) - C(1)	106.4 (3)
Pd(1) - P(1) - C(3)	112.9 (1)	N(2)C(15)C(16)	111.9 (4)
Pd(1) - P(1) - C(9)	121.1 (2)	P(2) - C(16) - C(15)	108.5 (3)
N(1)—C(1)		51.6 (4)	
N(2)—C(1	5)—C(16)—P(2)	-45.8 (5)	
C(2)—P(1)	-C(3)-C(4)	-133.5 (4)	
C(16)—P(2	2)—C(17)—C(22	2) 155.5 (4)	
C(2)—P(1)	-C(3)-C(8)	45.0 (4)	
C(16)—P(2	2)-C(17)-C(18	-24.7(5)	
C(2)—P(1)	C(9)C(10)	-136.1 (5)	
C(16)—P(2	2)-C(23)-C(24	119.0 (5)	
C(2)—P(1)	-C(9)-C(14)	43.8 (6)	
C(16)—P(2	-C(23)-C(28)	-651(5)	

Data were corrected only for Lorentz-polarization and absorption effects, and equivalent reflections were averaged. Reflections with $I < 0.5\sigma(I)$ were subsequently disregarded. The structure was solved by Patterson methods and expanded by Fourier difference syntheses. H atoms were located in a difference map. Their positions were not refined and their displacement parameters $U_{\rm iso}$ set as $1.2U_{\rm eq}$ of the attached C atom.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988). Cell refinement: MSC/AFC Diffractometer Control Software. Data reduction: TEXSAN (Molecular Structure Corporation, 1985, 1992). Program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992). Program(s) used to refine structure: TEXSAN. Software used to prepare material for publication: TEXSAN.

I wish to thank Alan Kennedy for assistance in data collection.

References

Bader, A. & Lindner, E. (1990). Coord. Chem. Rev. 108, 27-110.

- Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). *The DIRDIF Program System.* Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.
- Dilworth, J. R., Howe, S. D., Hutson, A. J., Miller, J. R., Silver, J., Thompson, R. M., Harman, M. & Hursthouse, M. B. (1994). J. Chem. Soc. Dalton Trans. pp. 3553-3562.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Molecular Structure Corporation (1985, 1992). *TEXSAN. Crystal Structure Analysis Package*. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Molecular Structure Corporation (1988). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Suzuki, T., Morikawa, A. & Kashiwabara, K. (1996). Bull. Chem. Soc. Jpn, 69, 2539–2548.
- Wehman, P., Ruelke, R. E., Kaasjager, V. E., Kamer, P. C. J., Kooijman, H., Spek, A. L., Elsevier, C. J., Vrieze, K. & van Leeuwen, P. W. N. M. (1995). J. Chem. Soc. Chem. Commun. pp. 331–332.

Acta Cryst. (1998). C54, 310-313

catena-Poly[[tetrakis(µ-3,5-dinitrobenzoato-0:0')dicopper(II)]bis[(µ-3,5-dinitrobenzoato-0:0')(methanol-0)copper(II)]]†

Tuncer Hökelek,^{a*} Yüksel Mert^b and Canan Ünaleroğlu^b

^aHacettepe University, Department of Physics, 06532 Beytepe, Ankara, Turkey, and ^bHacettepe University, Department of Chemistry, 06532 Beytepe, Ankara, Turkey. E-mail: merzifon@eti.cc.hun.edu.tr

(Received 30 June 1997; accepted 27 October 1997)

Abstract

The title complex, $[Cu_3\{(NO_2)_2C_6H_3COO\}_6(CH_3-OH)_2]_n$, is a linear polymeric chain with the dinitrobenzoate ions forming all bridges. The chain is linked across $Cu(CH_3OH)_2$ units on symmetry centres and includes fourfold bridged pairs of Cu atoms with a $Cu \cdots Cu$ separation of 2.616 (2) Å. The latter Cu atoms are five-coordinated, surrounded by square pyramids of

Printed in Great Britain - all rights reserved

Supplementary data for this paper are available from the IUCr electronic archives (Reference: MU1349). Services for accessing these data are described at the back of the journal.

[†] Alternative name: catena-poly[[pentakis(μ -3,5-dinitrobenzoato)-1:2 $\kappa^8 O:O'$;2:3 $\kappa^2 O:O'$ -dimethanol-3 $\kappa^2 O$ -tricopper(II)]- μ -(3,5-dinitrobenzoato)-1 $\kappa O:\kappa O'$].